

The GEN'AIR allows generating and measuring several different oxygen atmospheres. It's technology is based on the zirconia ionic conduction principle.
The GEN'AIR is made of two parts:

The pump: it raises or decreases the oxygen partial pressure in the gas that passes inside its zirconia tube. It requires only a low gas flow: between 1 and $121 / \mathrm{h}$.
It involves mixtures such as inert gas/oxygen or buffered mixtures/oxygen as CO/CO2/O2 or $\mathrm{H} 2 / \mathrm{H} 2 \mathrm{O} / \mathrm{O} 2$.

The gauge: it measures the partial pressure generated by the pump.
Thanks to the MicroPoas ${ }^{1}$ its response time is very fast and it gives extremely accurate measurements.

- Generation and analysis of atmospheres at controlled oxygen rates
- Use of only small quantity of carrier gas
- Limited costs owing to the use of a single gas
- Large dynamic scale
- Compact and secured system
- Almost maintenance-free and low servicing requirements
- Extremely high measurement stability

Operation principle

The pump:

A selector and a potentiometer are on the front panel to adjust the voltage applied to the pump, between 0 and around $+/-1250 \mathrm{mV}$. This generates an oxygen flow through the zirconia tube. The flow follows the Faraday's law:

$X=X_{0} \pm 0,209 * / / D$

Where \mathbf{X}_{0} is the mole fraction of oxygen before the pump, \mathbf{X} is the mole fraction of oxygen after the pump \mathbf{I} is the current intensity in amperes, \mathbf{D} is the flow of the carrier gas in I / h

The Gauge:

The gauge is placed after the pump; it enables validating the partial pressure generated by the pump. The MicroPoas - zirconia sensor with built-in metal reference - carries out the measurement.
The MicroPoas is based on the Nernst's law, like all other zirconia:

$\mathrm{E}=(\mathrm{RT} / 4 \mathrm{~F}) \ln$ (Pmes/Pref)

As for the MicroPoas, the reference partial pressure is set by an equilibrium between a metal and its oxide.

Example of performances

At $1.6 / / \mathrm{h}$ and $800^{\circ} \mathrm{C}$ for a gas containing 5% oxygen in nitrogen:

Voltage applied to the pump in mV	Oxygen partial pressure in atm
200	$3.70 \mathrm{E}-02$
400	$2.30 \mathrm{E}-02$
625	$5.40 \mathrm{E}-03$
900	$1.10 \mathrm{E}-08$
-1265	$1.40 \mathrm{E}-01$

Technical features

Measurement range	10^{-35} to $0.25 \mathrm{~atm}^{*}$
Necessary flow	1 to $12 \mathrm{I} / \mathrm{h}^{\star *}$
Output signals	$0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$, linear, with galvanic insulation
	RS232 port
Dimensions	$430 \times 170 \times 430 \mathrm{~mm}(\mathrm{wxhxd})$
Weight	15 kg
Power supply	115 or $230 \mathrm{Vac}-50 / 60 \mathrm{~Hz}$
Power	550 VA

** Measurement of trace oxygen with a zirconia sensor remains delicate insofar as the presence of trace of combustible component impurities may create
instability. More specifically inside the 10^{-8} to 10^{-12} atm O2 interval. The use of buffered mixtures enables generating reducing atmospheres under control.
** The flow is controlled by an external system. We advise the use of a mass flow controller (please contact us).

